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Analysis of Ferrite Circulators by 2-D Finite-Element
and Recursive Green’s Function Techniques
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Abstract—Ferrite circulator operation is analyzed here by two
techniques. The first employs a two-dimensional (2-D) finite-
element (FE) technique, using a publicly available FE package.
We show how to adapt this code to the solution of the magneto-
static equations and solve for the distribution of internal magnetic
field inside a round ferrite puck of finite thickness, and use it
to verify existing approximations for the demagnetizing fields.
Additionally, the 2-D FE method has also been used to calculate
the RF fields and scattering parameters in circulators having
noncircular shapes, as well as nonuniform material properties
and bias conditions. We have also investigated the field solutions
for round circulators, calculated using a recursive Green’s func-
tion (RGF) technique. This technique allows for radially varying
properties in the material or bias fields, and thus accommodates
the nonuniform demagnetizing field distribution in finite pucks.
A comparison of the results of this technique with experiment is
made. We show how the impedance-matching structures attached
to the circulator affect the field distributions inside, and present
plots of the field distributions as a function of frequency, which
provide insight into circulator operation.

Index Terms— Ferrite circulators, finite-element methods,
Green’s functions, magnetostatics.

I. INTRODUCTION

DESIGN AND development experience for microstrip
circulators began in 1965 [1]. Since then, experimental

data and the collective experience of the design community
has been used to scale devices with frequency and create
new designs for various applications. The general procedure
employed was to design, fabricate, measure, analyze, and
to iterate these steps in order to optimize. Often, several
experimental iterations would be needed. Tradeoff studies
would be required to satisfy the various design goals of
acceptable insertion loss, return loss, dissipation loss, isolation,
bandwidth, port impedances, package size, weight, ferrite
material, bias magnet, and cost. Recently, the materials growth
community has achieved success in the deposition of thin-film
ferrites on ceramic substrates [2] and on semiconductors [3].
Potential applications have grown for miniaturized integrated
circulators in the military (transmit/receive (T/R) modules,
phased-array radar front-ends) and the civilian product areas.
It is anticipated that an accurate circulator device design and
simulation tool is needed. In 1993, the Defense Advanced
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Research Projects Agency (DARPA) sponsored the Ferrite
Development Consortium (FDC), having among its goals
the development and delivery of a variety of contemporary
software tools which would aid the process of design. In
this paper, we report on the development and application of
some of the software tools created by the FDC for use in
the design of ferrite circulators. In Section II of this paper, a
two-dimensional (2-D) finite-element (FE) software program
is applied to the solution of the static and RF fields in ferrite
circulators. The program, which solves linear or nonlinear sets
of simultaneous partial differential equations in 2-D regions
having straight or curved boundaries, is first used to solve
for the approximate distribution of the internal static magnetic
field in a ferrite disk. The solution to this problem is then used
to validate an analytical approximation for the nonuniform
field distribution. With knowledge of the internal fields, the
results of two methods for the solution of the 2-D RF fields in
a circulator are presented and compared in Section III. These
field patterns inside the circulator demonstrate the insight
that can be gained into circulator operation using analytical
techniques.

II. A PPLICATION OF 2-D FEM

A. Solution for the Internal Static Magnetic Bias Field

In performing static magnetic-field calculations for circula-
tors, it is often erroneously assumed that the applied magnetic
field is uniform over the entire region of the magnetic
material. While this status can be satisfactorily approached
in laboratory measurements using large electromagnetic pole
pieces, the assumption is not valid for a packaged miniaturized
circulator with a nonideal geometrical arrangement of ferrite
puck, permanent magnet, and flux return path. However, even
if the applied magnetic field is maintained uniform, the internal
magnetic field , which determines the values of the terms
in the RF permeability tensor, would still not be uniform,
except in the limit of infinitesimal circulator thickness. Instead,
the circulator’s aspect ratio (radius to height) determines the
degree to which the nonuniform demagnetization field opposes
the applied magnetic field. A result of this internal bias field
variation is that ferromagnetic resonance (FMR), at which the
magnetic dissipation losses are a maximum, is spread out over
a wide range of frequencies. The conventional thinking for
field-below-resonance circulator design has been that the FMR
could be placed at zero frequency by using an applied bias
field approximately equal to the saturation magnetization. If
the demagnetization is not uniform, but varies widely, then in
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some cases the static magnetic field and, therefore, the FMR
frequency in the outer parts of the circulator puck rises to such
a high frequency that it may appear at the low-frequency end
of the desired operating frequency range.

The internal dc-bias field can be obtained by a direct solu-
tion of Maxwell’s magnetostatic (time-independent) equations.
Ampere’s law governing the magnetic field in current-free
time-independent conditions is and, therefore,
may equivalently be given by the gradient of a magnetostatic
potential :

(1)

For nonlinear ferrite material, , where
represents the magnetization inside the material caused

by . If the – relation can be assumed to be single
valued (by neglecting the small hysteresis effect close to zero
applied field), the magnetic flux density is a nonlinear
monotonically increasing function of and in the same
direction as . The magnetization may be incorporated into a
nonlinear permeability term , giving

(2)

where is the magnitude of . Recalling that , we
obtain the nonlinear Poisson equation for the magnetostatic
potential

(3)

from which the -directed internal magnetic field may obtained
from the gradient

(4)

This is the internal dc magnetic field used in the 2-D analysis
of the circulator.

To solve (3) for circular ferrite pucks, we have employed an
established 2-D FE solver named PDE2D [4]. PDE2D solves
equations of the form

A B

F (5)

whereA, B, andF may be linear or nonlinear vector functions
of the spatial coordinates and , of the time , and of
the unknown vector . The region in which the equations
are solved may have straight or curved boundaries, and the
boundary functionG or G must be specified as either one of
two forms: eitherA B G (free boundary
conditions), or G (fixed boundary conditions).
In these expressions, and are the values of the
and components of a unit vector outwardly normal to the
boundary. If the problem is time dependent or nonlinear, an
initial condition or a starting estimate must
be specified. PDE2D has been applied in the past to a wide
variety of problems, and recently to the problem of waveguide
propagation [5], [6].

To use PDE2D to solve for the demagnetizing fields in a
ferrite puck, the nonlinear Poisson equation must be put into
the proper formalism. In polar coordinates, (3) may be written

(6)

The three-dimensional (3-D) circular puck may be analyzed in
two dimensions by recognizing that the cylindrical symmetry
enforces the absence of a-varying magnetic field. Equation
(6) becomes

(7)

with the components given by

(8)

from (2).
The leading term in the Poisson equation is a singularity

at the origin, so we multiply through by and combine (1),
(7), and (8). We set , and identify ,
and solve for and its spatial derivatives. Using subscript
notation to represent theand derivatives and

, we obtain

(9)

(10)

where is given by the - relation for the ferrite
material.

The 2-D problem is solved for a cylindrical space surround-
ing the ferrite puck, as shown in Fig. 1. Let the ferrite puck
have radius and thickness . The cylindrical air space
surrounding the puck has a radius of and a height of .
Because of symmetry, the problem needs only to be solved
for the space and , which is a quarter
of the vertical cut plane through the axis. In this solution
region, the ferrite material occupies the space
and .

The boundary conditions are applied as follows. If the
entire solution space is immersed in a uniform-directed
applied magnetic field in the absence of the ferrite puck, then

on the upper boundary of the space, far
from the puck. At and at , since
there are no radially directed magnetic fields here. At the
lower boundary (the midplane of the puck), the magnetostatic
potential may be defined to be zero, since by symmetry the
fields are normal to the line.

The permeability function is defined as follows.
Outside the puck, . Inside the puck, we require
that the permeability function must be single valued, so
hysteresis is neglected. A reasonable and convenient analytic
approximation developed here for the permeability function
of a ferrite is

(11)

Here, is the saturation magnetization and is the
“corner” magnetic field at which the magnetization reaches
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Fig. 1. Cross section of the ferrite puck showing the solution space for the
2-D FE solution for the internal magnetic field. The solution is obtained in
the region0 � r � a and0 � z � h. The ferrite occupies the lower inside
portion of this region.

0.707 times its saturation value. The asymptotic behavior
of this function may be seen to be correct by noticing the
asymptotic behavior in the low and high magnetic-field limits.
At very low fields, the magnetization is proportional to
and in the same direction as . At very high fields, the
magnetization saturates at , after which the magnetic flux
density continues to increase at the saturated rate with
increasing . By examining curves
for various ferrites [7], we note that the corner field , is
often on the order of 1 Oe (in CGS units) and that at that
field, the flux density is on the order of, but still much less
than, the saturation magnetization, which is often on the order
of thousands of gauss. The advantage of this ferrite model for
use in PDE2D over, for example, a piecewise linear model, in
which for ( is a relative permeability)
and for is that the Jacobian matrix
elements are continuous and may be calculated explicitly. The
Jacobian matrix for this PDE is

F F F

A A A

B B B

A A

B B
(12)

Derivatives in (12) are calculated for this ferrite model as

A
(13a)

B
(13b)

A
(13c)

and
B

(13d)

in which

(14)

Fig. 2. Plot of the magnetostatic potential	 (arbitrary units) for a puck
calculated with the 2-D FE solver. The solution space shown corresponds to
the quarter-plane region of the cut plane shown in Fig. 1. The magnetic field
is the gradient of this potential. Close to the origin, thez-directed magnetic
field Hz is relatively constant and increases as the outer wall or top edge of
the puck is approached. Fig. 3(a) showsHz versusr=a.

Because of the symmetry of the Jacobian matrix, the execution
time and the memory storage requirements of the solver are
cut in half. The solution is started by assuming an initial guess
for the potential given by , which
corresponds to the solution in empty space.

The triangulation is chosen by specifying an initial mini-
mum triangulation grid, which uniquely defines the regions
of ferrite and air. The triangulation mesh density is then
increased proportionately to the gradient of the solution. With
the input data for a typical ferrite puck, the problem converges
in about ten iterations. The magnetostatic potentialobtained
in this manner for a ferrite puck having a diameter-to-height
ratio of 10, a saturation magnetization of 2000 G, in an
applied magnetic field of 2000 Oe, is shown in Fig. 2.
corresponding to at the midplane of the puck is provided
in Fig. 3(a).

We have found that the approximation by Joseph and
Schloemann (JS approximation) [8], agrees well with the more
exact 2-D FE solution and we have incorporated their approx-
imation into the 2-D circulator solution. The JS approximation
calculates the value of the demagnetization factor for use
in the demagnetization equation for the internal dc magnetic
field

(15)

In the limit of an infinitesimally thin film, , and
can be made equal to zero by setting .

For pucks of finite thickness, is a function of radial
and vertical position. Fig. 3(b) shows given by the JS
approximation compared with the effective obtained by
the 2-D FE method used above, calculated at the midplane
of the puck for a couple of representative aspect ratios.
Results indicate that the JS analytical expansion is a good
approximation to the actual internal field for thin circular
pucks.

B. Calculation of RF Fields Inside Circulator

It is common practice to bias a circulator with close
to 0 Oe so the operating frequency may be placed reasonably
far from the FMR frequency, and thus the magnetic losses
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(a)

(b)

Fig. 3. (a) Plot of the static magnetic fieldHz in a ferrite puck calculated by
the 2-D FE code at the horizontal midplane of the puck. (b) Comparison of the
equivalent demagnetization factorNzz obtained from this field distribution
with the JS approximation. The ferrite is modeled by theB–H curve of (11),
with 4�Ms = 2000 G and the corner magnetic fieldH1 equal to 1 Oe.

may be minimized. The FMR frequency is
, where is the gyromagnetic ratio of approximately

2.8 MHz/Oe. A constant zero value for cannot be main-
tained at every point in the puck, as long as any one or all of
the quantities , , and vary with radial position,
except for some extraordinary magnet design for which each
of the radial dependencies essentially cancel each other. In
practice, therefore, the internal field in the ferrite puck will
always vary radially, even though the applied field and the
saturation magnetization may be maintained constant. Because
the internal magnetic field is a function of radial position, the
permeability tensor elements will also be a function of radial
position. The 2-D analytical methods previously created to
solve the thin round circulator [9] are not valid for a circulator
whose properties are not uniform. In the following sections, we
will show results of the 2-D FE solver applied to the circulator
and compare them to contemporary analytical and Green’s
function methods for obtaining the fields in a circulator [10].

The analysis of the circulator using the 2-D FE solver begins
with the definition of the RF permeability tensor in rectangular
coordinates. Assuming that the ferrite material is biased by an
applied magnetic field in the-direction, the RF permeability
tensor takes on the form [11]

(16)

where

(17)

and

(18)

Here, is the magnetization frequency given by
, and is the ferromagnetic resonant frequency defined

earlier. The values of and may depend upon position. The
constitutive relation between the RF magnetic flux density
and the RF magnetic field is thus

(19)

Magnetic losses are included by allowing the ferromagnetic
resonant frequency to be complex with loss component. The
constitutive relation between the electric flux densityand
the electric field is , where
dielectric losses are accounted for through the loss tangent.

Now, Maxwell’s equations in rectangular coordinates are

(20a)

(20b)

(20c)

(20d)

(20e)

(20f)

If we restrict consideration to the 2-D case for which
, and , then

(21)

These are three linear partial differential equations which
can be solved using PDE2D. We normalize the equations by
defining

and
(22)

where and are chosen to simplify the equations. Then,
setting equal to the ferrite puck radius, ,
and equal to the propagation constant in the unmagnetized
ferrite , we obtain

(23)
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Next, we allow for complex (phasor) fields, and proceed to
split the system into real and imaginary parts. The system of
equations can be written as

(24)
where

(25)

Equation (24) may be seen as the following six first-order
linear partial differential equations for , , , ,

where, here, the and subscripts indicate differentiation
by the subscripted variable

F

F

F

F

F

F (26)

This set of six partial differential equations fits into the
required PDE2D formalism by settingA B , and
F .

The boundary conditions at the ferrite circulator perimeter
are of two types. At the boundary corresponding to the ferrite-
dielectric wall, a perfect magnetic-wall boundary condition
is used. At a wall location whose angle is, the tangential
magnetic field is thus given by

(27)

The boundary function isA B G . Since bothA and
B are 0, the boundary functionG can be used to enforce the
tangential condition

G

(28)

which makes both the real and imaginary parts of the tangential
(to the cylindrical wall) magnetic field, located at the angle,
equal to 0. At the ports, a field matching boundary condition

is implemented. At port 1, the incident port, the-directed
electric field at the port boundary is asserted to have unit
amplitude and zero phase, so and
. The tangential magnetic field, which is continuous across

the port interface, is matched to the tangential magnetic field
in the outside dielectric, which is given by the electric field
divided by the wave impedance in the outside dielectric

(29)

This leads us to the boundary function for port 1:

G

(30)

At the forward transmission and isolated ports (ports 2 and 3)
the field is not specified as at port 1, but the ratio of the fields
is equal to the wave impedance in the dielectric

(31)

giving at ports 2 and 3

G

(32)

These boundary conditions are similar to those used by Bosma
in his original solution [9]. Equation (26), with the boundary
conditions of (28), (30) and (32), provides the required set of
equations to solve the problem.

The numerical procedure outlined above was used to ana-
lyze an embedded puck circulator (a ferrite puck surrounded by
dielectric) and the results compared with previously published
Green’s function analytical codes for uniform circulators [12],
[13]. For a sufficiently small triangulation grid (Fig. 4) which
yields smooth plotted results, the calculation time on a high-
end workstation is a couple of minutes per frequency point.
The 2-D FE code, though considerably slower than the ana-
lytical solution (which typically requires only a few seconds
per frequency point), is valuable not only in solving arbitrarily
shaped noncircular 2-D problems, but also by providing insight
and a validity check for the analytical code. Fig. 5 exhibits
the agreement between the 2-D FE solver and the analytical
code for a round circulator. The-parameter results obtained
from the 2-D FE code closely match the analytical results.
Fig. 6(a) exhibits the electric-field standing wave pattern in
the circulator, assuming the intrinsic matching conditions
described above.

A particular advantage of the 2-D FE approach is that it
can be applied to arbitrary geometries, for which the analytical
codes based on circular basis functions cannot be applied, and
inhomogeneous material or inhomogeneous bias conditions.
An example of these calculations for a hexagonally shaped
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(a) (b) (c)

Fig. 4. Triangulation grids used by the 2-D FE code. (a) Initial triangulation pattern defined at the start of the simulation. The seven vertices, six triangles
(generalized to have curved or straight boundaries), and six boundary arcs are labeled. The transmission lines, which adjoin the disk at arcs 2, 4, and6,
are not shown. (b) Final triangulation (300 triangles) produced by the 2-D FE code. (c) Final triangulation after adaptive refinement. Here, the triangulation
pattern of (b) was modified to densify the triangles in regions where the solution had the highest gradient.

Fig. 5. Comparison of theS-parameters of an embedded puck circulator, calculated by the 2-D FE method with the analytical solution, showing excellent
agreement. The calculation is made for an intrinsic circulator, i.e., one which has a signal incident on port 1, with only outgoing signals at ports 2 and 3. The
calculations assumed that the ferrite was YIG with a4�Ms = 1780 G, "r = 15 for both the ferrite and the outside dielectric, a loss tangent of 0.0002, and
a linewidth�H = 45 Oe. The external bias field was 1780 Oe, and the variation of the demagnetization fields over the puck and the anisotropy fields were
neglected in both calculations. The circulator had a port aperture width= 1:5 mm, puck radius= 2:79 mm, and the puck height= 0:508 mm.

circulator is shown in Fig. 6(b). Here, the noncircular shape is
chosen to be a threefold symmetric six-sided structure. The in-
ternal magnetic field is assumed uniform and demagnetization
is neglected. The contours in the plot are contours of constant
magnitude of the -directed electric field, illustrative of the
standing wave in the ferrite resonator. The material parameters
and magnetic bias were identical to that of the round circulator
of Fig. 6(a), only the shape was changed, keeping the major
radius of the two devices the same.

III. A PPLICATION OF THE 2-D
RECURSIVE GREEN’S FUNCTION SOLVER

For the important special case of round circulators having
radially varying nonuniformity, Green’s function techniques
have been recently extended to handle radial variation. To

solve the circulator analytically in the presence of radial
variation, we have previously developed a recursive Green’s
function (RGF) solution [10] as opposed to the use of a single
uniform region Green’s function [12], [13]. The theory behind
the RGF allows many of the efficient economies of the Green’s
function theory to be applied to the evaluation of the RGF.
This leads to extremely short calculation times compared to
that found for numerically intensive simulators like finite-
difference and FE codes. The essence of the RGF approach is
to break up the circulator puck into a single internal disk con-
taining the origin and a set of concentric annuli or rings. Each
of these circulator zones may be characterized by different
values of applied magnetic bias field, saturation magnetization,
and demagnetization factor. In this way, the circulator, with
natural as well as intentionally imposed inhomogeneities, can
be properly modeled. The RGF theory applied to circulators
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(a)

(b)

Fig. 6. Contours of constant electric-field magnitude in an intrinsically
matched (a) round circulator and (b) “hexagonal” circulator, as calculated
by the 2-D FE code. The higher index numbers which label the contours
correspond to higher magnitudes of the vertical electric field. The input port
is at the left, the isolated port is at the upper right. The frequency is close to
the frequency of maximum isolation. Both devices were calculated assuming
uniform 4�Ms = 2300 G, andHapplied = 2300 Oe, and�H = 320 Oe.
The ferrite dielectric constant is 13.3, the outer dielectric constant is 9.5, and
the ferrite loss tangent is 0.0003. The radius of the round puck is 2.7026 mm,
the height is 0.635 mm, and the port aperture is 1.67 mm. The “hexagonal”
circulator had all material parameters the same as the round circulator, and
was of the same thickness. The major diameters and the port apertures of
both devices were the same, and the sidewalls containing the ports on device
(b) were each 1.7 mm.

has been thoroughly presented in [14] and [15]. This capability
to account for radial variations can provide new insight. In this
section we will present some applications and new results of
the RGF solution.

Consider the “ringed” circulator shown in Fig. 7. Consider
first the case for which the ferrite is uniform and the rings
are used simply to provide a way of allowing the inter-
nal field in the rings to vary radially. This corresponds to
the case when the demagnetizing factor is the only radially

Fig. 7. Diagram of a radially varying circulator which shows how the region
is broken up into concentric rings. Each ring is assumed to have constant
saturation magnetization and applied magnetic field.

varying parameter. Using the JS approximation, can
be calculated. From the prior discussion it is obvious how
radial variations in the externally applied bias field, or in
the saturation magnetization, can be treated, once the ringed
circulator analysis capability is in place. Circulators having
multiple rings of different ferrite materials can be readily
analyzed, as well as those with a combination of ferrite
and dielectric rings. To model a dielectric ring it is only
necessary to assign it a saturation magnetization of zero, which
takes away all magnetic properties while leaving its dielectric
properties intact.

In the RGF technique, an algorithm for calculating the
dyadic Green’s functions for a ferrite puck is implemented.
The Green’s functions are kernels which relate the electric field
at a particular point (the response point) to the magnetic fields
on the boundary (the source point). It is important to realize
that the dyadic Green’s functions can be obtained without
knowledge of the outside circuits or transmission lines. This
technique only requires a specification of the source fields
(the magnetic fields) at the boundary. Since the magnetic-wall
condition at if is assumed to hold
everywhere except at the ports, then the only source points
are at the ports.

If the ports are labeled 1, 2, and 3, then the electric field at
any point in the interior of the ferrite disk is given by

(33)

Also, when the response point is at the ports the electric field
can be expressed as

(34)

In this notation, the Green’s function gives the electric
field at port caused by a magnetic field at port, and the
total field is obtained by superposition. All the ’s and ’s
in (33) and (34) are calculated in the RGF technique.

We will attach to each of the ports an impedance equal to
the wave impedance of a microstrip having a width and
height equal to the port width and height and a dielectric
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Fig. 8. Signal definitions for the intrinsic circulator. The incident signal
appears at port 1, the output signal at port 2, and the isolated signal at port
3. There are no incoming signals at ports 2 and 3.

whose permittivity is chosen by the user. The electric and
magnetic fields tangent to the interface between the circulator
and the attached microstrip are continuous. The characteristic
impedance of the transmission line is proportional to the wave
impedance in the transmission line, for TEM and quasi-TEM
lines. Therefore, at each port

(35a)

(35b)

constant constant (35c)

constant constant (35d)

Because the port aperture is the same (obviously) whether you
are looking inward to the circulator or outward to the attached
microstrip, the proportionality constant relating characteristic
impedance to wave impedance is the same in both directions.

The intrinsic circulator’s port boundary conditions used here
are that at ports 2 and 3 the incident wave amplitude is
zero (Fig. 8). This can be accomplished by terminating the
attached transmission line in an infinitely absorbing load, so
that whatever power does get transmitted into the output lines
will never be reflected back into the circulator. It is not the
same as an impedance match to the circulator, which would
imply maximum power transfer into the transmission lines
across the interface and could only be accomplished with a
frequency-dependent complex characteristic impedance whose
value is the complex conjugate of .

A. Solving for -Parameters

Let us assume reflectionless load condition at ports 2 and
3, but allow an incoming signal at port 1. For the traveling
waves, is equal to the ratio in the microstrip

(36a)

(36b)

(36c)

Then we can express all of the port fields in terms of the-
parameters and the amplitude of an incident electric field at
port 1

(37a)

(37b)

(37c)

(37d)

(37e)

(37f)

These six equations [(37a)–(37f)] can be solved for, ,
and in terms of , , and . It is found that

(38a)

(38b)

(38c)

The electric fields , , and are then substituted into (34)
and the three magnetic fields , , and are obtained.
Returning to (37a) and (37b), the input reflection coefficient
is determined as

(39a)

and using (37d) and (37f) the transmission coefficients are
found as

(39b)

(39c)

This solution may be called the “intrinsic” solution for
the circulator. It is neither perfectly matched, nor matched
to a 50- system impedance; instead its-parameters are
referenced to the characteristic impedanceof the “native
geometry” transmission lines attached to its ports. This method
of solution is essentially identical to the Bosma [9] solution
of 1965. Standard -parameter matrix conversion formulas
may now be applied to renormalize the intrinsic circulator to
a different impedance or embed the circulator in a complex
network. We may embed this solution into standard circuit
simulators if we renormalize the reference impedance to 50
(following, for example, [18]) and let the circuit simulator
supply the embedding network. A natural design choice for an
embedding network would be to embed the intrinsic circulator
into a set of standardized quarter-wave matching structures.
The resulting frequency response of the circulator circuit is
due to the cascade of the intrinsic circulator performance with
that of the impedance-matching network.

Fig. 9(a) and (b) shows, respectively, the measured insertion
loss and isolation versus frequency, and measured return
loss versus frequency, compared to calculations done with
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(a)

(b)

Fig. 9. Scattering parameters calculated with the RGF technique compared
with measurement. The circulator is the same device that was simulated with
the PDE2D code in Fig. 6(a). This device is a planar embedded puck design, in
which the ferrite puck is contained entirely within a dielectric substrate. There
are single-stage quarter-wave matching transformers (fcenter = 9:5 GHz)
attached to each port. (Fabricated by D. J. Popelka and G. Harrison of EMS
Technologies, Inc, Norcross, GA, for the DARPA FDC).

the RGF code. Radial variation of the internal magnetic
field caused by demagnetization is taken into account.
Comparison is made with experiment by using a computational
port aperture width where is the physical width
of the circulator port microstrip lines. This correction to
must be made because of the fringing fields accompanying
open microstrip structures [16], [17].

B. Solving for Electric Fields Inside the Puck

Once , , and of the intrinsic circulator are
obtained we can find the electric fields at an interior response
point in terms of the incident electric field by substituting
(37b), (37d), and (37f) into (33). The result is

(40)

and is the solution when the incident field is at port 1 only.
This solution is plotted in Fig. 10(a) and compares excellently
with the field pattern generated by the 2-D FE solution in

Fig. 10. Electric-field patterns for the intrinsic circulator and matched cir-
culator calculated using the RGF technique at a frequency corresponding to
maximum isolation. The patterns are calculated by assuming incident signals
at (a) port 1 only, (b) port 2 only, and (c) port 3 only, with no incident signal
at any of the other ports. The three patterns are weighted and superimposed
in (d), assuming a unit incident signal at port 1 and signals at ports 2 and
3 weighted by the reflection coefficients obtained by terminating ports 2 and
3 in the matching network shown in (e). The darker regions of the contours
correspond to higher electric fields, and the lighter regions to lower electric
fields. When all three contributions to the total field are superimposed, the
isolation at port 3 is clearly evident. [The device parameters are identical to
those used in Fig. 6(a).]

Section II. Here we have made use of the fact that is a
traveling electric-field wave in a microstrip transmission line
of characteristic impedance , so we can write the electric
field in the interior of the circulator in terms of the normalized
transmission-line traveling-wave component

(41)

By superposition we can obtain the total field when there
is incidence at all three ports:

(42)

where and are electric-field distributions similar to
except that they are rotated by and 120 , because they
represent disk resonances excited by inputs at ports 2 and 3,
respectively, rather than at port 1. Fig. 10(a)–(c) shows the
field plots calculated by this technique for incidence at only
one of the three ports of the circulator, each taken in turn.

To find the total field when terminations are placed at the
ports, we only need to find and in terms of . Suppose
all ports have identical matching networks attached to them
followed by a termination in the system impedance . Let
each matching network have the same symmetrical scattering
matrix as follows:

(43)

with port 1 of the matching network attached to the system
impedance and port 2 attached to the circulator. The load re-
flection coefficient looking outward from each of the circulator
ports into the system-terminated matching network is

(44)
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where

(45)

We now incorporate this loading into the circulator. Let
, and for the intrinsic circulator.

Then

(46)

The relations at ports 2 and 3 looking outward are
and . Substituting in the above equation, we obtain

(47)

or, rearranging

(48)

We can solve this for the scattered waves, , and and,
thereby, find the incident waves and in terms of :

(49)

(50)

and

(51)

Here, is the input reflection coefficient looking into port 1
referenced to when the circulator is terminated at ports 2
and 3 with matching networks which are themselves termi-
nated in the system impedance. and are convenient
collections of terms from (49) and (50). We then have

(52)

If , , and , which is true for
a well-designed circulator near the center of its band, then

and , so these coefficients
approximately represent one-trip and two-trip reflections off
of the matching structures at ports 2 and 3, respectively. Thus,

is small and is even smaller. This means the electric-
field pattern in the circulator when matched will look a lot
like the intrinsic pattern , but with corrections given by the
complex amplitudes of and .

The field patterns for the matched circulator calculated using
this technique are shown in Fig. 10(d). The way in which the
field pattern depends on frequency for the matched circulator
is shown in Fig. 11. The ferrite disk resonator exhibits a null in
the standing-wave electric field, whose location and behavior
determines the isolation. As frequency is increased, the null
travels around the perimeter of the circulator in a clockwise
direction. At the circulation frequency, the null is located at the
isolated port. The spatial width of the null and the rate at which
it traverses the port aperture with frequency determines the

Fig. 11. Frequency sweep of the contours of constant electric field in the
matched round circulator calculated by the RGF technique of Fig. 10(d). The
input port is at the left of the disk and the isolated port is at the upper
right of the disk. The darker regions of the contours correspond to higher
electric fields, and the lighter regions to lower electric fields, and the ports
are indicated on the middle diagram. These plots indicate that the null in
the signal proceeds around the perimeter of the puck, moving clockwise with
frequency. The minimum signal at port 3 and maximum isolation occur near
9.5 GHz. Above 12 GHz, the field pattern in the puck breaks up into a higher
order resonance.

bandwidth of the circulator. At high frequencies, the resonance
in the puck breaks up into a higher order mode.

We may relate these field plots quantitatively to the incident
power as follows. The incident wave may be found in terms
of , the wave incident on the matching network in front of
port 1. It is given by

(53)

so that

(54)

Finally, the incident wave can be related to the incident
power by , yielding

(55)

Equation (55) gives the field at every point in the circulator,
as a function of the RF power incident on the input to the
matching structure.

IV. CONCLUSION

We have shown applications of circulator analysis by two
techniques—a 2-D FE technique and an RGF technique. The
2-D FE method is shown to solve for the distribution of
internal magnetic field inside a round ferrite puck, and has
been shown to verify the usefulness of analytical expan-
sions which have existed in the literature to account for
the demagnetizing fields in finite-sized pucks. The 2-D FE
method has also been used to calculate the RF fields and
scattering parameters in circulators having noncircular shapes,
and can easily and naturally be adapted to analyze a circulator
having nonuniform material properties. The 2-D FE codes



NEWMAN AND KROWNE: ANALYSIS OF FERRITE CIRCULATORS BY 2-D FE AND RGF TECHNIQUES 177

used here run much slower than analytical codes, taking
several minutes per frequency point. We have also investigated
the field solutions for round circulators calculated using the
RGF technique. This technique allows for radially varying
properties in the material or bias fields, and is limited to
round devices. Results of the RGF technique are compared
to measurements on an embedded puck circulator. We have
shown how the impedance-matching structures attached to the
circulator affect the field distributions inside, and plotted the
behavior of the field distributions with frequency. The field
plots have provided insight into the nature of the ferrite puck
resonance which creates circulation.
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